If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+(3x)^2=160
We move all terms to the left:
x^2+(3x)^2-(160)=0
We add all the numbers together, and all the variables
4x^2-160=0
a = 4; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·4·(-160)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*4}=\frac{0-16\sqrt{10}}{8} =-\frac{16\sqrt{10}}{8} =-2\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*4}=\frac{0+16\sqrt{10}}{8} =\frac{16\sqrt{10}}{8} =2\sqrt{10} $
| 6n+7=-3n-21-6 | | 41=6-11z | | 14x-44-12x=14 | | 10+5y=290 | | 2^2x+6=256 | | -2+5+6=-m+2m-7 | | 4+2y=140 | | 6w+2=8-6(w+10) | | -2+5=6=-m+2m-7 | | 4x/5=17 | | 2x+2=6x+22 | | -4a-6=-2a | | 7x^2/x=49 | | 16x+24=32 | | 9+5p=-17-8p | | 0.8(10x+24)=2.7(0.2x+5) | | x+35=-3x+71 | | x+35=-3x | | 5m+6-2m=7m-10 | | 57y^2+13y-45=0 | | -8x-10=21-3x | | 32-24x-10=-24 | | 10-10y=-20 | | -6s+5.8=23.8 | | 1/4-1/3y=12 | | 3/2-6y=18 | | -3(-2.7x+0.2)+2.8x=31.01 | | (3+x)*(x)=88 | | 1/6(12-6x=5(x+4) | | 4x-5(3x+10)=19 | | C(x)=10.00+0.05x | | 2y-8×=1 |